Система автономного отопления частного загородного дома – сама по себе является весьма непростым по планированию и практическому воплощению проектом. Требуется учесть массу нюансов, провести необходимые теплотехнические расчёты, правильно выбрать все требуемое для системы оборудование по типу и техническим характеристикам, определиться со схемами его установки и прокладки необходимых коммуникаций, грамотно осуществить монтаж и провести пуско-наладочные работы. Все это делается для того, чтобы создание в жилых помещениях наиболее оптимального микроклимата в полной мере сочеталось с простотой эксплуатации системы отопления, безотказностью ее работы и, в обязательном порядке — с максимально возможной экономичностью.
Ну а если разрабатывается схема отопления 2 х этажного частного дома, то задача становится еще сложнее. Мало того что возрастает количество помещений и протяженность тепловых трасс. Важно добиться необходимого равномерного распределения тепла по всем помещениям, вне зависимости от того, на каком этаже они расположены и какую имеют площадь.
В настоящей публикации будут рассмотрены основные элементы системы отопления частного дома и приведены несколько схем, которые уже проверены в эксплуатации. Безусловно, необходимо упомянуть о преимуществах и недостатках каждого из вариантов.
Какие существуют системы отопления?
Содержание статьи
- 1 Какие существуют системы отопления?
- 2 Преимущества и недостатки различных систем
- 3 Схемы разводки в двухэтажном доме
- 4 Основы расчета главных элементов системы отопления
- 5 Видео: Двухтрубная система отопления двухэтажного дома (полипропилен)
Открытые и закрытые системы отопления
Прежде всего необходимо рассмотреть и сравнить две базовые схемы – системы отопления открытого и закрытого типа. В чем их главное различие?
По трубам циркулирует теплоноситель – жидкость с высокой теплоёмкостью, переносящая тепловую энергию от места нагрева – отопительного котла, к точкам теплообмена – радиаторам, конвекторам, контурам теплых полов и т.п. Как и любое физическое тело, жидкость имеет свойство расширения при повышении температуры. Но, в отличие, например, газов, она является несжимаемым веществом, то есть появляющимся излишкам объема нудно предусмотреть место, чтобы давление в трубах, по законам термодинамики, не возрастало до критических величин.
Для этого в любой системе отопления с жидким теплоносителем предусматривается расширительный бак. Его конструкция и место установки и предопределяет разделение отопительных систем на закрытые и открытые.
- Принцип устройства открытой системы отопления показан на схеме:
1 – отопительный котел.
2 – труба (стояк) подачи.
3 – расширительный бак открытого типа.
4 – радиаторы отопления.
5 – труба «обратки»
6 – насосный узел.
Расширительный бак представляет собой открытую емкость заводского или кустарного производства. Он имеет входной патрубок, который подключен к подающему стояку. Может дополняться патрубками для предохранения от перелива при заполнении системы, для восполнения недостатка теплоносителя (воды).
Главное условие – расширительный бак сам по себе должен быть установлен в самой высшей точке системы. Это нужно, во-первых, для того, чтобы излишки теплоносителя попросту не переливались наружу по правилу сообщающихся сосудов, а во-вторых, он служит эффективным возхдухоотводчиком – все пузырьки газа, образовавшиеся при работе системы, поднимаются наверх и свободно выходят в атмосферу.
Под № 6 на схеме показан насосный узел. Хотя очень часто системы открытого типа организуют по принципу естественной циркуляции теплоносителя, установка насоса –никогда не помешает. Тем более, если обвязать его правильно, с обводной петлей и запорными кранами – это даст возможность по мере необходимости переключаться с естественной циркуляции на принудительную и обратно.
К слову, установка открытого расширительного бака именно в верхней точке трубы подачи – вовсе не является каким-то обязательным правилом. Здесь возможны варианты, выбор которых производится исходя из специфических особенностей конкретной системы отопления:
а – бачок расположен в высшей точке главной трубы подачи, отходящей от котла. Можно сказать – классический вариант
б – расширительный бачок связан трубой с «обраткой». Иногда приходится прибегать к такому расположению, хотя у него есть существенный недостаток – бачок не выполняем в полной мере функции воздухоотводчик, и чтобы избежать газовых пробок, такое устройство придётся устанавливать специальные краны на стояках или непосредственно на радиаторах отопления.
в – бачок установлен на дальнем стояке подачи.
г – редко встречающееся расположение бачка с насосным узлом непосредственно после него на трубе подачи.
- Ниже приведена схема системы отопления закрытого типа:
Нумерация общих элементов сохранена по аналогии с предыдущей схемой. В чем главные отличия?
В системе установлен герметичный расширительный бак (7), имеющий особую конструкцию. Он разделен особой эластичной мембраной на две половины – водяную и воздушную камеру.
Работает такой бачок очень просто. При температурном расширении теплоносителя его излишки попадают в закрытый бак, увеличивая в объеме водяную камеру за счет растяжения или деформации мембраны. Соответственно, в противоположной воздушной камере возрастает давление. При снижении температуры давление воздуха выталкивает жидкий теплоноситель обратно в трубы системы.
Цены на расширительные баки
Такой расширительный бак может быть установлен практически в любой точке системы отопления. Очень часто его располагают в непосредственной близости к котлу на трубе «обратки».
Так как система полностью герметична, следует обезопаситься от критического возрастания давления в ней при нештатных ситуациях. Это обуславливает обязательность еще одного элемента – предохранительного клапана, настроенного на определенный порог срабатывания. Обычно это устройство входит в состав так называемой «группы безопасности» (на схеме — №8). Ее стандартная комплектация включает:
1 – контрольно–измерительный прибор для визуального отслеживания состояния системы: манометр или совмещенное устройство – манометр-термометр.
2 – автоматический воздухоотводчик.
3 – предохранительный клапан с предустановкой верхнего порога давления или с возможностью самостоятельного регулирования этого параметра.
Группа безопасности обычно размещается таким образом, чтобы обеспечивалась простота контроля за состоянием системы. Нередко ее устанавливают прямо около котла. В этом случае верхние участки системы отопления потребуют дополнительных воздухоотводчиков на стояках или на радиаторах.
Системы с естественной и принудительной циркуляцией
О принципах естественной и принудительной циркуляции уже вскользь упоминалось, но стоит их рассмотреть поближе.
- Естественное перемещение теплоносителя по контурам отопления объясняется законами физики – разницей в плотности горячей и охлаждённой жидкости. Чтобы понять принцип, взглянем на схему:
1 – точка первичного теплообмена, котел, где остывший теплоноситель получает нагрев за счет внешних источников энергии.
2 – труба подачи разогретого теплоносителя.
3 – точка вторичного теплообмена – радиатор отопления, установленный в помещении. Он должен располагаться выше котла на величину h.
4 – труба «обрати, идущая от радиаторов к котлу.
Плотность горячей жидкости (Ргор) всегда значительно меньше, чем охлажденной (Рохл). Нагретый теплоноситель, таким образом, не может оказывать какого-либо значимого воздействия на более плотную субстанцию. Поэтому можно условно убрать верхнюю «красную« часть схемы, и рассмотреть процессы в трубе «обратки».
Получаются «классические» сообщающиеся сосуды, один из которых расположен выше другого. Такая гидравлическая система всегда стремится к равновесию – к обеспечению равного уровня в обоих сосудах. За счет превышения одного над другим в трубе обратки возникает постоянный ток жидкости в сторону котла. Такого естественным путем созданного напора при правильном планировании разводки достаточно для общей циркуляции теплоносителя по замкнутому контуру отопления.
Возможно, вас заинтересует информация о том, что такое гидравлическая стрелка
Чем больше величина превышения радиаторов над котлом (h), тем активнее естественное движение жидкости, но она не должна превышать 3 метров. Очень часто, чтобы добиться оптимального расположения, котел устанавливают в подвальном или цокольном помещении. Если это сделать невозможно, то стараются несколько понизить уровень пола в котельной.
Чтобы облегчить и стабилизировать естественную циркуляцию, ей помогают и гравитацией – все трубы контура располагают с уклоном (от 5 до 10 мм на погонный метр).
- Система принудительной циркуляции предусматривает обязательную установку специального электрического насоса необходимой производительности.
Как уже упоминалось, система может быть комбинированной – правильно обвязанный насос позволит проводить переключение с одного принципа циркуляции на иной. Это особо важно в тех случаях, когда подача электроэнергии в районе проживания не отличается стабильностью.
Оптимальным местом расположения насоса считается труба «обратки» перед входом в котел. Это, безусловно, не догма, но на этом участке он в меньшей степени будет подвержен влиянию высоких температур теплоносителя и прослужит дольше. В настоящее время все чаще приобретаются котлы отопления, которые конструктивно уже содержат циркуляционный насос с нужными параметрами.
Цены на разные виды котлов отопления
Преимущества и недостатки различных систем
Прежде всего, нужно отметить, что нет четкого разделения систем сразу по двум упомянутым параметрам. Так, открытая система может работать по принципам как естественной, так и принудительной циркуляции, в зависимости от своих конструктивных особенностей. То же самое в определенной мере можно сказать и о закрытой герметичной системе, хотя уже — с определёнными допущениями.
Но если рассматривать представленные в интернете проекты, то можно заметить, что открытая система чаще предполагает естественную циркуляцию или комбинированную, с возможностью переключения. Закрытые схемы отопления чаще всего предусматривают установку принудительной циркуляции – так они работают корректнее и легче поддаются регулировкам.
Так, рассмотрим основные преимущества и недостатки обеих систем.
Вначале – о достоинствах открытой системы с естественной циркуляцией.
- В системе открытого типа расширительный бак выполняет сразу несколько функций.
— Такая схема не требует установки группы безопасности, так как давление никогда не может достичь критических значений.
— Установка расширительного бака в высшей точке на трубе подачи обеспечивает самопроизвольный выход скопившихся газовых пузырьков. Чаще всего – этого вполне достаточно, и установки дополнительных воздухоотводчиков не потребуется.
- Система – чрезвычайно надежна в плане эксплуатации, так как не содержит сложных узлов. По сути, срок ее «жизни» определяется только лишь состоянием труб и радиаторов.
- Нет полной зависимости от подачи электропитания, не расходуется электроэнергия.
- Отсутствие электромеханических узлов – это бесшумность функционирования отопления.
- Ничто не мешает оснастить систему принудительной циркуляцией.
- Система обладает интересным свойством саморегуляции – интенсивность циркуляции теплоносителя зависит от скорости его остывания в радиаторах, то есть от температуры воздуха в помещениях. Чем выше нагрев, тем ниже скорость потока. Это зачастую позволяет сбалансировать систему без применения сложных регулировочных устройств.
Теперь – о ее недостатках:
- Правило установки расширительного бака в высшей точке часто приводит к необходимости его расположения в чердачном помещении. Если чердак холодный, то потребуется обязательная надежная термоизоляция бака – для предотвращения серьезных тепловых потерь и во избежание замерзания при низких зимних температурах.
- Отрытый бак не препятствует контакту теплоносителя с атмосферой. А это, в свою очередь, влечет два негативных момента:
— Во-первых, теплоноситель испаряется, значит, нужно следить за его уровнем. Кроме того, это ограничивает хозяев в выборе теплоносителя – испарение антифриза влечет определенные материальные затраты. Мало того, может измениться и концентрация химических составляющих, а для некоторых котлов (например, электролитных) это недопустимо.
— Во-вторых, жидкость постоянно насыщается кислородом из воздуха. Это приводит к активизации коррозионных процессов (особенно страдают стальные и алюминиевые радиаторы). И второй негатив – повышенное газообразование в процессе нагрева.
- Такая система вызывает определенные сложности при монтаже — требуется обязательное выдерживание требуемого уровня уклона. Кроме того, потребуются трубы разного диаметра, в том числе – большого, так как для каждого участка при естественной циркуляции нужно соблюсти нужное сечение. Это обстоятельств также осложняет монтаж и приводит к существенным материальным затратам, особенно при использовании металлических труб.
- Возможности такой системы весьма ограничены – при слишком большой удалённости от котла гидравлическое сопротивление труб может быть выше, чем создаваемый естественный напор жидкости, и циркуляция станет невозможной. Кстати, это полностью исключает и возможность использования «теплых полов» без специального дополнительного оборудования.
- Система – весьма инертна, особенно при «холодном запуске». Требуется серьёзный стартовый «импульс», то есть пуск котла на большую мощность, чтобы обеспечить начало циркуляции жидкости. По тем же причинам – есть определенные сложности в тонкой балансировке системы по этажам и помещениям.
А сейчас взглянем на закрытую систему с принудительной циркуляцией.
Ее достоинства:
- При условии правильного подбора циркуляционного насоса система не ограничена ни этажностью здания, ни размером в плане.
- Принудительная циркуляция обеспечивает более быстрый и равномерный нагрев радиаторов при пуске. Она значительно легче поддаётся тонким регулировкам.
- Испарения теплоносителя и его насыщения кислородом не происходит. Нет ограничений ни по типу жидкости, ни по разновидности радиаторов.
- Герметичность системы предотвращает попадание воздуха в трубы и радиаторы. Газообразование в жидкости со временем постепенно сходит на нет, и легко устраняется воздухоотводчиками.
- Есть возможность использования труб меньшего диаметра. При их монтаже не требуется соблюдения уклона.
- Расширительный бак можно установить в любом удобном для хозяев месте в отапливаемом помещении — полностью исключается вероятность его замерзания.
- Разница температур на выходе из котла и в «обратке» при стабильной работе отопления – существенно меньше. Это обстоятельство значительно повышает срок службы оборудования.
- Такая система – наиболее гибкая в плане использования отопительных приборов. Она подойдет и для «классических» радиаторов, и для конвекторов и «тепловых завес», настенных или скрытых, и для контуров «теплого пола».
Недостатков немного, но они все же есть:
- Для корректной работы потребуется провести предварительный расчет всех составляющих системы – котла, радиаторов, циркуляционного насоса, расширительного бака, чтобы добиться полной согласованности их функционирования.
- Невозможно обойтись без установки «группы безопасности».
- Пожалуй, самый главный недостаток – зависимость от стабильности подачи электроэнергии.
Скорее всего, это потребует приобретения и установки источников бесперебойного питания (если конструкция не предполагает возможности переключения на естественную циркуляцию при энергонезависимом котле).
Возможно, вас заинтересует информация о том, что собой представляют биметаллические радиаторы отопления
Цены на источники бесперебойного питания
Схемы разводки в двухэтажном доме
Как развести трубы отопления по двухэтажному дому? Существует несколько схем, от самых простых до достаточно сложных.
Прежде всего, нужно определиться, будет система одно трубной или двухтрубной.
- Пример однотрубной системы показан на рисунке-схеме:
Радиаторы отопления как будто «нанизаны» на одну трубу, которая закольцована от выхода к входу в котел и по которой осуществляется и подача, и отвод теплоносителя. Очевидные преимущества такой схемы – ее простота и минимальный расход материалов при монтаже. На это, увы, ее достоинства и заканчиваются.
Совершенно очевидно, что от радиатора к радиатору температура жидкости падает. Таким образом, в помещениях, расположенных ближе к котельной, температура батарей будет существенно выше, чем в комнатах, расположенных дальше. Конечно, это можно в какой-то мере компенсировать разным количеством обогревательных секций, но видится это только в небольших по площади домах. Если учесть, что речь в статье идет о двухэтажном здании, то вряд ли такая схема станет оптимальным решением.
Часть проблем решается при монтаже однотрубной системы – «ленинградки», схема которой показана на рисунке ниже. Вход и вывод каждой батареи в этом случае соединены между собой перемычкой-байпасом, и потери тепла по мере удаления от котла уже не так значительны.
«Ленинградка» поддается и еще большей модернизации. Так, на байпасе можно установить регулировочный вентиль. Такие же вентили можно установить и на одном или даже обоих патрубках радиатора (показаны стрелками). Это сразу открывает широкие возможности в более тонкой настройке системы отопления для каждого помещения в отдельности. Появляется доступ к каждому радиатору – его можно в случае необходимости попросту отключить или снять для замены, нисколько не нарушая при этом работоспособности всего контура.
Кстати, своей гибкостью, простотой, малым расходом труб «ленинградка» завоевала огромную популярность – ее часто можно встретить и в одноэтажных домах (особенно с выраженно большим периметром стен), и в многоэтажках. Вполне она подойдёт и для двухэтажного особняка.
И все же недостатков она не лишена. Полностью исключается возможность подключения к ней контуров теплого пола, полотенцесушителей и т.п. Кроме того, взаимное расположение помещений, дверей, выходов на балконы и т.п. не всегда позволяют протянуть трубы по всему периметру, а «ленинградка» в конечном счете должна представлять собой замкнутое кольцо.
- Двухтрубная система отопления – намного совершеннее. Хотя она и потребует большего расхода материалов и будет сложнее в монтаже, но все предпочтительнее остановиться на ней.
По сути она приставляет собой идущие параллельно друг другу трубы подачи и «обратки». Радиаторы при этом связаны патрубками с каждой из них. Пример показан на схеме:
Радиаторы подключены к трубам подачи и обратки параллельно, и каждый из них никоим образом не влияет на работу других. Каждую «точку» можно очень точно настроить индивидуально – для этого применяют байпасы-перемычки (поз. 1), на которые можно установить балансировочные вентили (поз. 2) или даже трехходовые регулировочные краны-терморегуляторы (поз. 3), постоянно поддерживающие стабильную температуру нагрева конкретной батареи.
Возможно, вас заинтересует информация о том, байпас что это такое
Преимущества двухтрубной системы неоспоримы:
- Выдерживается общая температура нагрева на входе во все радиаторы.
- Существенно уменьшаются суммарные потери давления от гидравлического сопротивления труб. Это означает, что можно установить насос меньшей мощности.
- Любой из радиаторов можно отключить или даже снять для ремонта или замены – это не окажет влияния на систему в целом.
- Система очень универсальна, и к ней вполне можно подключать любые приборы теплообмена – радиаторы, теплые полы (через специальные коллекторные шкафы), конвекторы, фанкойлы и т.п.
Пожалуй, единственным недостатком двухтрубной системы является ее материалоемкость и сложность монтажа. Кроме того, расчетов при ее проектировании тоже прибавится.
Одним из сложных, но очень эффективных в работе вариантов двухтрубной системы является коллекторная или лучевая разводка. В этом случае от двух коллекторов – подачи и обратки, к каждому радиатору протянуты две индивидуальные трубы. Это безусловно, во много раз усложняет монтаж – и материала потребуется несравнимо больше, и спрятать коллекторную разводку тяжелее (обычно ее размещают под поверхностью пола). Но зато регулировка такой схемы отличается высокой точностью, и может проводиться с одного места – из коллекторного шкафа, оснащенного всем необходимым регулировочным и предохранительным оборудованием.
Кстати говоря, в масштабах двухэтажной постройки очень часто приходится прибегать к комбинированию схем подключения, двухтрубной и однотрубной, на отдельных участках, там, где это выгоднее и проще с точки зрения монтажа, и не оказывает влияния на общую эффективность отопления.
Следующий важный вопрос – поэтажная разводка труб.
Используются два основных варианта. Первый — это система вертикальных стояков, каждый их которых обеспечивает теплом одновременно оба этажа. А второй — схема с так называемыми горизонтальными стояками (вернее их будет назвать «лежаками»), в которой каждый этаж имеет собственную разводку.
Пример разводки со стояками показан на рисунке:
В данном варианте представлены стояки с нижней разводкой. От горизонтальных лежаков первого этажа понимаются вверх трубы подачи, и сюда же возвращаются «обратки». В этом случае в верхней оконечности каждого стояка целесообразно будет разместить воздухоотводчик.
Существует и иной вариант – стояки с верхней подачей. В этом случае выходящая их котла труба подачи сразу поднимается вверх, уже на втором этаже или даже в верхнем техническом помещении к ней подключаются вертикальные стояки, пронизывающие строение сверху донизу.
Схема со стояками удобна в том случае, если планировка этажей во многом совпадает, и радиаторы расположены один над другим. Кроме того, именно этот вариант будет оптимальным тогда, когда принято решение все же применить открытую систему отопления с естественной циркуляцией – в данном случае важнейшей задачей является минимизация протяженности горизонтальных (наклонных) участков, а стояки не оказывают серьезного сопротивления течению теплоносителя сверху вниз.
Пример такой системы приведен на следующей схеме:
От котла (поз.1) поднимается общая труба подачи большого диаметра, которая входит в расширительный бак большого объема (поз. 3), расположенный в верхней точке системы примерно по центру между стояками. Решение достаточно интересное – расширительный бак одновременно играет роль своеобразного коллектора, от которого лучами во все стороны расходятся трубы подачи на вертикальные стояки. К стоякам подключены радиаторы обоих этажей (поз. 4), точную регулировку которых осуществляют специальными вентилями (поз. 5).
Как уже упоминалось, системы с естественной циркуляцией достаточно требовательны к точному подбору условных диаметров труб. На схеме эти показаны буквенными обозначениями:
a — dy = 65 мм
b — dy = 50 мм
c — dy = 32 мм
d — dy = 25 мм
е — dy = 20 мм
Недостатком системы со стояками принято считать достаточно сложное ее исполнение – придется организовывать несколько межэтажных переходов через перекрытие. Кроме того, вертикальные стояки практически невозможно «убрать с глаз» — это бывает важно тем хозяевам, у которых декоративная отделка комнат стоит в приоритете.
Пример двухтрубной системы с индивидуальной разводкой для каждого этажа показан на следующей схеме:
Здесь – всего два расположенных рядом вертикальных стояка – для подачи и для «обратки». Такой принцип выглядит достаточно рационально с точки зрения монтажа, позволяет полностью отключать целый этаж в случае, если он по каким-либо причинам временно не используется. Кроме того, подбная установка труб позволяет почти полностью скрыть их из виду, закрыв напольным покрытием и оставив наружи лишь входные и выходные патрубки радиаторов.
По сути, на каждом этаже может применяться своя схема, в зависимости от плана расположения комнат. Существует немало вариантов расположения труб и подключения радиаторов при поэтажной разводке. Некоторые из них показаны на схеме, где проведено условное разделение на три этажа.
- Условный первый этаж – применена несложная в исполнении двухтрубная разводка «тупикового» типа со встречным движением теплоносителя. Схема имеет свои особенности. Подающие и обратные трубы монтируются параллельно друг другу до самого конца ветки (веток может быть несколько – на схеме показаны две). Диаметр труб постепенно сужается от радиатора к радиатору. Очень важно предусмотреть балансировочные вентили, иначе радиаторы, установленные ближе к котлу, способны замкнуть ток теплоносителя через себя, оставляя непрогретыми последующие точки теплообмена.
- На втором этаже показана так называемая «петля Тихельмана». Очень удачная схема, в которой потоки в подаче и «обратке» идут в одном направлении. Предусматривается диагональное подключение батарей – вход сверху и выход снизу – это считается оптимальным с точки зрения теплоотдачи. Очень часто при такой схеме даже не требуется балансировки радиаторов. Но есть важное условие – трубы должны обязательно быть одного диаметра.
- Третий этаж оборудован по уже упоминавшейся коллекторной схеме. От двух коллекторов идет индивидуальная разводка к каждому радиатору трубами строго одного диаметра. Система – самая удобная в точной настройке. Именно ее следует использовать, если планируется монтаж контуров «теплого пола». Желательно, чтобы коллекторы располагались максимально близко к центру этажа – для выдерживания примерной соразмерности длин всех отходящих от них «лучей».
Существует немало иных вариантов разводок в двухэтажном доме, и все их рассмотреть в масштабе одной статьи не получится. Кроме того, многое зависит от «геометрии», архитектурных особенностей дома, и разработать «универсальные рецепты» — попросту невозможно. В таких вопросах лучше довериться опытным специалистам – они помогут правильно подобрать схему к конкретным условиям.
Возможно, вас заинтересует информация о том, что собой представляет терморегулятор для батарей отопления
Видео: полезная информация по схемам радиаторного отопления
Основы расчета главных элементов системы отопления
Мало определиться с типом системы отопления и схемой прокладки труб – необходимо четко определиться с эксплуатационными параметрами, чтобы правильно приобрести и установить основные необходимые ее элементы – обогревательный котел, радиаторы отопления, расширительный бак, циркуляционный насос.
Как рассчитать требуемую мощность котла?
Существует немало методик расчёта этого показателя. Очень часто можно встретить рекомендации исходить из общей площади отапливаемых помещений в доме, а потом провести вычисления из расчета 100 Вт на 1 м².
Такая рекомендация имеет право на жизнь, и может дать общее представление о требуемой тепловой мощности. Однако, она скорее подходит для очень усредненных у условий, и не учитывает целого ряда важных особенностей, которые напрямую влияют на теплопотери дома. Поэтому лучше не полениться, и провести расчет более тщательно.
Лучше всего к делу подойти следующим образом. Для начала – начертить таблицу, в которой поэтажно перечислить все помещения, где будут устанавливаться отопительные приборы. Например, это может выглядеть так:
Помещение | Площадь, м² | Внешние стены, количество, входят на: | Количество, тип и размеры окон | Наружные двери (на улицу или на балкон) | Результат расчетов, кВт |
---|---|---|---|---|---|
ИТОГО | 22,4 кВт | ||||
1 этаж | |||||
Кухня | 9 | 1, Юг | 2, двойной стеклопакет, 1,1×0,9 м | 1 | 1.31 |
Прихожая | 5 | 1, Ю-З | - | 1 | 0.68 |
Столовая | 18 | 2, С, В | 2, двойной стеклопакет, 1,4 × 1,0 | нет | 2.4 |
… | … | ... | ... | ... | ... |
2 этаж | |||||
Детская | ... | ... | ... | ... | ... |
Спальня 1 | ... | ... | ... | ... | ... |
Спальня 2 | ... | ... | ... | ... | ... |
… | … | ... | ... | ... | ... |
Имея перед глазами план дома и располагая информацией об особенностях своего жилья, прогулявшись по нему, в случае необходимости, с рулеткой, будет совсем несложно собрать все необходимые данные для расчетов.
Затем останется засесть за вычисления. Но не станем утомлять читателей длинной формулой и таблицами коэффициентов. В двух словах – расчет проводится, исходя их уже упомянутого норматива в 100 Вт/м². Но при этом учитывается множество поправок, которые влияют на требуемую мощность отопительной системы для поддержания комфортной температуры и компенсации тепловых потерь. Все эти поправочные коэффициенты внесены в предлагаемый вниманию калькулятор – необходимо лишь ввести запрашиваемые данные и получить результат.
Калькулятор расчета требуемой тепловой мощности котла отопления
Расчет проводится для каждого помещения в отдельности и результат вписывается в таблицу. А затем останется только найти сумму — это и будет минимальной тепловой мощностью, которую должен выдавать отопительный котел. Естественно, при выборе модели можно заложить еще и «резерв», порядка 20%.
Убедитесь, что с помощью калькулятора расчет займет совсем немного времени!
Расширительный бачок
Этот, казалось бы, несложный элемент также нуждается в расчетах – объем бачка должен соответствовать основным параметрам системы.
Как рассчитать параметры расширительного бака?
Чтобы не повторять уже однажды рассказанное, будет правильнее отослать читателя к специальной публикации нашего портала, которая полностью посвящена выбору и установке расширительного бачка для системы закрытого типа. Там же размещен и калькулятор его расчета.
Циркуляционный насос
При всей внешней схожести моделей, циркуляционные насосы для системы отопления могут различаться своими параметрами. Речь сейчас идет не о монтажных размерах, особенностях конструкции или потребляемой мощности – для расчета системы отопления важны другие эксплуатационные характеристики.
Важно определить, какое количество теплоносителя должен перекачивать насос в единицу времени – это напрямую влияет на количество переносимого по системе тепла.
И второе – насос должен создать в системе стабильный поток воды, преодолевая гидравлическое сопротивление. Значит, требуется вычислить необходимый уровень создаваемого им напора.
Для обоих параметров имеются специальные формулы расчета (с допустимым упрощением, не влияющим на работоспособность системы).
1. Производительность насоса
Рассчитать требуемую производительность насоса поможет следующее соотношение:
Q = P / (Δᵗ × 1,16)
Q — производительность, выраженная в кг/час.
P — мощность котла отопительной системы, которую мы уже научились рассчитывать чуть выше.
Δᵗ — разница температур на входя и на входе в систему. Особой точности здесь не требуется, поэтому можно принять эту величину за 20 °С при использовании радиаторов отопления, 10 °С –если установлены конвекторы скрытой установки, и 5 °С в том случае, если система представляет собой водяной «теплый пол».
1.16 – коэффициент удельной теплоемкости воды, выраженный в Вт×ч– способность 1 грамма теплоносителя перенести определенное количество тепловой энергии за единицу времени.
Полученный результат придётся разделить на плотность воды при температуре порядка 80 °С – так будет получена искомая производительность, выраженная в м³/час.
Быстро и точно подсчитать поможет наш встроенный калькулятор:
Калькулятор расчета производительности циркуляционного насоса
2. Требуемый напор
Напор, создаваемый насосом, должен обеспечивать ток воды на всех участках отопительного контура. Рассчитывается он по следующей формуле:
H = R × L × Zf
— необходимый напор, Па.
— усредненное значение гидравлического сопротивления прямого участка трубопровода. Расчет этого параметра – достаточно сложная процедура, но в данном случае не будет ошибкой принять для двухэтажного частного дома значение 150 Па/м.
— общая длина всех труб контуров отопительной системы, в том числе и подачи, и «обратки».
— корректировочный коэффициент, предусматривающий повышенное гидравлическое сопротивление в фитингах и запорно-регулирующей арматуре системы отопления. С вполне допустимой погрешностью можно взять значение 1,3 в случае, если установлены стандартные фитинги и шаровые краны, и 1,7 – когда используются термостатические двух— или трехходовые краны.
Результат будет получен в Паскалях, но его удобнее перевести в метры водяного столба, так как часто в техдокументации насосов используется именно эта величина.
Можно подсчитать самостоятельно или воспользоваться предлагаемым калькулятором:
Калькулятор расчета требуемого напора, создаваемого циркуляционным насосом
Радиаторы отопления
Выбор радиаторов отопления – чрезвычайно важная процедура, так как именно от этих теплообменных приборов в конечном счете будет зависеть микроклимат в помещениях. Как уже упоминалось, далеко не все радиаторы являются полностью универсальными, и ставить решающим критерием при выборе только внешний вид или доступную цену – будет большой ошибкой.
Вопрос этот требует весьма подробной проработки.
Как подобрать оптимальные радиаторы?
Подробно о существующих моделях и о расчете количества секций батарей отопления для каждого конкретного помещения — в специальной публикации нашего портала.
И в завершение статьи – пример создания системы отопления двухэтажного дома, с использованием недорогих полипропиленовых труб: Гидрострелка принцип работы назначение и расчеты вы можете узнать по ссылке.
Видео: Двухтрубная система отопления двухэтажного дома (полипропилен)
Очень хорошо подобран материал. Спасибо.
Здравствуте. А вы бы могли назвать имя программы которой рисовали отопление .. Чертежа на видео.
Не все так однозначно.
Я лет пять тому назад, тоже прочем в инете массу статей на тему одно трубной и двух трубной системы отопления. Остановился на двухтрубной…..замучился, дальние радиаторы были всегда еле теплые.
Все размонтировал и сделал Ленинградку с байпасами.
Теперь все радиаторы отлично греют.
Интересная и полезная информация, благодарю авторов!